GCE MARKING SCHEME

PHYSICS
AS/Advanced

SUMMER 2012

INTRODUCTION

The marking schemes which follow were those used by WJEC for the Summer 2012 examination in GCE PHYSICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.

Question			Marking details	Marks Available
3	(a)	(i)	$\underline{12}$ Joules per coulomb (1)	
			Supplied from cell / source / battery / chemical to electrical (1)	2
		(ii)	Energy lost in the resistance of cell	1
	(b)		$\left\{\frac{3.6(1)}{120}\right\} \quad=0.03[\Omega](1)$	2
	(c)		$I=\frac{12}{0.03}=400[\mathrm{~A}] \quad \text { ecf from (b) }$	1
	(d)	(i)	$Q=3 \times\left[\left(16 \times 60^{2}\right)\right.$ or $\left.57600(1)\right]$	
			$=172800[\mathrm{C}]$ (1)	2
		(ii)	$t=\frac{172,800}{120} \quad=1440 \text { seconds } / 24 \text { mins UNIT mark }$	1
			Allow ecf from (d) (i)	
			Question 3 Total	[9]

Question			Marking details	Marks Available
4	(a)		All 4 positions considered, 2 relevant statements per position	
			At start (A) $E_{\text {Grav }}-\max$ $E_{k}-$ zero $E_{\text {Elastic }}-$ zero	
			Free fall, Cord slack(B) $E_{G r a v}-$ decreasing E_{k} - increasing $E_{\text {Elastic }}$ - zero	
			Cord stretching (C) $\quad E_{\text {Grav }}-$ decreasing E_{k} - increasing or decreasing $E_{\text {Elastic }}$ - increasing	
			$\begin{array}{ll} \text { At lowest point (D) } & \begin{array}{l} E_{\text {Grav }}-\text { minimum (accept zero if explained) } \\ \\ E_{k}-\text { zero } \\ \\ E_{\text {Elastic }}-\text { maximum } \end{array} \end{array}$	
			$5^{\text {th }}$ mark available for other general comment e.g. Some of initial energy lost due to air resistance / rope gets hot (1) Don't accept statement of the conservation of energy on its own.	5
	(b)	(i)	$\left.E_{p \text { loss }}=70 \times 9.8[1] \times 130(1) \text { substitution (not } g=10 \mathrm{~m} \mathrm{~s}^{-2}\right)$	
			$\text { = } 89271 \text { [J] (1) (accept } 89300 \text { or } 89000 \text {) }$	2
		(ii)	$89271=1 / 2 k(50)^{2}$ (2) [1 mark for $E_{p \operatorname{loss}}=\frac{1}{2} k x^{2} ; 1$ mark for $\left.50[\mathrm{~m}]\right]$	
			$k=71.4\left[\mathrm{~N} \mathrm{~m}^{-1}\right] \text { (1) ecf from (b)(i) }$	3
		(iii)	$m g=k x(1) \quad=\frac{70 \times 9.81}{71.4}=9.6[\mathrm{~m}](1) \quad$ ecf on k from (b)(ii) N.B. Only penalise once for use of $g=10 \mathrm{~m} \mathrm{~s}^{-2}$	2
			Question 4 total	[12]

Question			Marking details	$\begin{gathered} \text { Marks } \\ \text { Available } \end{gathered}$
5	(a)	(i)	$v_{\mathrm{H}}=16 \cos 40^{\circ}(1)=12.3\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$	
			$v_{\mathrm{V}}=16 \sin 40^{\circ}(1) \quad=10.3\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$	2
		(ii)	Horizontal: constant velocity Vertical: acceleration / changing (both statements required)	1
	(b)	(i)	$0=10.3-1.6 t$ (1) ecf from (a)(i) penalise only once for use of $9.8 \mathrm{~m} \mathrm{~s}^{-2}$ $t=6.4 \text { [s] }$	
			$t_{\text {flight }}=12.8[\mathrm{~s}]$ (1) ecf between $2^{\text {nd }}$ and $3^{\text {rd }}$ marks Or any other alternative method used to gain correct answer $=3$ marks	3
		(ii)	$D_{\text {H }}=12.3 \times 12.8=157[\mathrm{~m}] \quad$ ecf from (b)(i)	1
		(iii)	$0=(10.3)^{2}-2 \times 1.6 \mathrm{~s} \text { (1) } \quad \text { ecf from (a)(i) }$	
			$S=33.2[\mathrm{~m}]$ (1)	2
	(c)		Air resistance on Earth (1)	
			g on Earth different (accept greater) than on the Moon (1)	2
			Question 5 Total	[11]

| Question | | Marking details | |
| :--- | :--- | :--- | :--- | :--- |
| (a) | | Marks
 Available | |

Question			Marking details	Marks Available
7	(a)		$F \rightarrow \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$	
			$\rho \rightarrow \mathrm{kg} \mathrm{m}^{-3}(1), v^{2} \rightarrow \mathrm{~m}^{2} \mathrm{~s}^{-2}(1)$	
			Correct manipulation / cancelling seen $\rightarrow \mathrm{m}^{2}$ (1)	4
	(b)	(i)	Correct statement of Newton's $3^{\text {rd }}$ Law	1
		(ii)	- May not have same magnitude - Forces act on same object - Forces not of same type (e.g. not two ' g ' forces or contact forces) Don't accept : They are not equal unless qualified Only one statement required.	1
	(c)	(i)	$60 \times 9.8=588 \mathrm{~N}$ unit mark	1
		(ii)	$F_{\text {res }}=W-F_{\text {drag }}$ implied in any correct form (1)	
			$F_{\text {drag }}=588-[(60 \times 1.4)(1)]$ ecf from (c)(i)	
			$F_{\text {drag }}=504[\mathrm{~N}]$ (1)	3

Question		Marking details	Marks Available
(d)	(i)	 Axes labelled with units (1); Points plotted correctly to within $\pm 1 / 2$ square division (1); Line (1) Area attempted (1) $\begin{aligned} & (1.4 \times 10)+(1 / 2 \times 10 \times[9.8-14]) \\ & 14+42=56\left[\mathrm{~m} \mathrm{~s}^{-1}\right](1)(\text { accept range } 52-60) \\ & 504=\frac{1.2 \times D \times 56^{2}}{2} \quad \text { substitution (1) allow ecf on } F_{\text {drag }} \text { and } v \\ & D=0.27\left[\mathrm{~m}^{2}\right](1)(\text { accept range } 0.23-0.31) \end{aligned}$	3 2 2 [17]

Question			Marking details	Marks Available
1	(a)	(i)	I. $2.0[\mathrm{~m}] / 2.5$ or clear equivalent	1
			II. The same	1
		(ii)	I. $\quad 5.0 \mathrm{~Hz} / \mathrm{s}^{-1}$ UNIT	1
			II. $\quad y / \mathrm{m} \mid \quad$ PARTICLE B	
			Same f and A (1) Delayed by $\frac{1}{4}$ cycle (1)	2
		(iii)	$4.0\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ ecf	1
	(b)		Statement that f doesn't change (1), or working based on this principle (e.g. $v=5.0[\mathrm{~Hz}] \times 0.60[\mathrm{~m}]) \quad v=3.0\left[\mathrm{~m} \mathrm{~s}^{-1}\right]$ (1) ecf	2
			Question 1 total	[8]

Question			Marking details	$\begin{gathered} \text { Marks } \\ \text { Available } \end{gathered}$
2	(a)		Waves arrive in phase at P. (1) Accept twin graphs: displacement along paths or displacement versus time at P.	
			This occurs if path difference $=[0], \lambda, 2 \lambda \ldots \ldots \ldots$ (1) Accept $n \lambda$	2
	(b)	(i)	Insertion of a, D and y into $\lambda=\frac{a y}{D}$, even if powers of 10 incorrect. (1)	
			$\lambda=600 \mathrm{n}[\mathrm{~m}]$	2
		(ii)	Beams (fringes, orders)	
			brighter / sharper or more defined or narrower / further apart / slit separation more accurately known (Any 2 x (1))	2
			Question 2 total	[6]

Question			Marking details	Marks Available
8	(a)	(i)	$=5.4[\pm 0.2]$ [day] (1)	
			$\mathrm{P}=0.70[\pm 0.1] \times 10^{30}[\mathrm{~W}]$ (1) ecf	2
		(ii)	$I=\frac{P}{4 \pi r^{2}}$ (1) \quad [or equivalent, or by implication]	
			$r=2.6 \times 10^{20}[\mathrm{~m}](1) \quad$ ecf	2
			[1 mark only lost if factor of 4 omitted]	
	(b)	(i)	$\lambda_{\text {peak }}=450 \mathrm{n}[\mathrm{m}]$ (1) $\quad[\pm 10 \mathrm{~nm}]$	
			$T=6400$ [K] (1) [ecf on $\lambda_{\text {peak] }}$	2
		(ii)	$A=\frac{P}{\alpha T^{4}}(1) \quad$ [transposition at any stage]	
			$=10 \times 10^{21}\left[\mathrm{~m}^{2}\right]$ (1) $\quad[$ or by implication $] \quad$ ecf on T	
			$r=\sqrt{\frac{A}{4 \pi}}(1) \quad\left[=2.8 \times 10^{10}[\mathrm{~m}]\right] \quad \text { [or by implication] }$	
			$d=5.6 \times 10^{10}[\mathrm{~m}]$ (1) ecf (missing factor of 4 loses 1 mark)	4
			Question 8 Total	[10]

Question			Marking details	Marks Available
9	(a)	(i)	$\mathrm{e}^{-}:+1 \quad \mathrm{e}^{+}:-1 \quad(1) \quad \gamma: 0$ (1)	2
		(ii)	electromagnetic : γ involvement (1) both	1
	(b)		π^{-}(1)	
			```because either charge of \(\mathrm{x}=-\mathrm{e}\) [accept -1\(]\) and x must be a hadron / can't be a lepton Or \(u\) number \(=0-1=-1\), d number \(=0-(-1)=1\) or equivalent (1)```	
				2
	(c)	(i)	$\mathrm{e}^{+}$or positron	1
		(ii)	Weak	1
	(d)		$\pi^{-}$[accept $\mu$ or $\left.\bar{u} d\right] \rightarrow \mathrm{e}^{-}+\bar{v}_{\mathrm{e}}($ accept $+\bar{v})$   [In fact, $\pi^{-} \rightarrow \mu^{-}+\bar{v}_{\mu}$ much more likely]	1
			Question 8 Total	[8]


Question			Marking details	Marks Available
1	(a)	(i)	Increase (change) in the internal energy [of the system]	1
		(ii)	Heat supplied to (flowing into) [the system]	1
		(iii)	Work done by the system	1
	(b)		$P V=n R T$	
			$T=\frac{P V}{n R}(1)=\frac{\left(1.01 \times 10^{5}\right)\left(1.3 \times 1.00 \times 10^{-2}\right)}{(0.4)(8.31)}=395 \mathrm{~K}(1) \text { unit mark }$	2
	(c)	(i)	$\left(1.01 \times 10^{5}\right)\left(0.3 \times 1.00 \times 10^{-2}\right)=303[\mathrm{~J}]$ on gas (1)	
		(ii)	0 / No work (1)	
		(iii)	$\begin{aligned} & \frac{1}{2}\left(0.3 \times 1.00 \times 10^{-2}\right)\left(0.2 \times 1.01 \times 10^{5}\right)+\left(0.3 \times 1.00 \times 10^{-2}\right)\left(1.01 \times 10^{5}\right) \\ & =30+303 \end{aligned}$	
			$=333$ [J] (1) by gas ecf from (c)(i) (1)	4
	(d)		Convincing evidence of multiplication by 3 for the 3 cycles (1) $\Delta U=0$	
			$Q=\Delta U+W=0+90=90[\mathrm{~J}] \text { into gas (1) ecf from (c)(iii) }$	3
			Question 1 total	[12]







Question		Marking details	Marks Available
7	(a)	1. Planets move in elliptical orbits with the Sun at one focus (1)   2. Line joining a planet to the Sun sweeps out equal areas in equal time[ intervals]. (1)   3. $r^{3} \propto T^{2} r$-semi major axis (or accept radius), $T$ - period of orbit (1)	3
	(b)	Consider $\frac{r^{3}}{T^{2}}$, For Earth $\frac{\left(149.6 \times 10^{9}\right)^{3}}{(1.00 \times 365.25 \times 24 \times 60 \times 60)^{2}}=3.36 \times 10^{18}\left[\mathrm{~m}^{3} \mathrm{~s}^{-2}\right](1)$ For Jupiter $\frac{\left(778.6 \times 10^{9}\right)^{3}}{(11.86 \times 365.25 \times 24 \times 60 \times 60)^{2}}=3.37 \times 10^{18}\left[\mathrm{~m}^{3} \mathrm{~s}^{-2}\right](1)$	
		Both essentially equal so data consistent with Kepler's third law. (1) (accept answers in other units e.g. $\mathrm{m}^{3} \mathrm{yr}^{-2}$ )	3
	(c)	A body moving in a circular motion experiences an acceleration towards the centre of the circle. This is known as centripetal acceleration.	1
	(d)	$\frac{G M_{s} m}{r^{2}}=\frac{m v^{2}}{r}(1) \quad$ m: mass of planet $\quad$ or equivalent method $v^{2}=\frac{G M_{S}}{r} \quad \text { also } \quad v=\frac{2 \pi r}{T}$	
		Combine $\left(\frac{2 \pi r}{T}\right)^{2}=\frac{G M_{S}}{r}$   (1) $\frac{4 \pi^{2} r^{2}}{T^{2}}=\frac{G M_{S}}{r}$ $\begin{equation*} M_{s}=\frac{4 \pi^{2}}{G} \quad \frac{r^{3}}{T^{2}}=\frac{4 \pi^{2}}{\left(6.67 \times 10^{-11}\right)} \quad\left(3.36 \times 10^{18}\right)=2 \times 10^{30}[\mathrm{~kg}] \tag{1} \end{equation*}$	4
		Question 7 Total	[11]


Question		Marking details	Marks Available
1	(a)	All $\alpha$ absorbed/ stopped by paper (1)	
		(nearly) all $\gamma$ passes through (1)	2
	(b)	${ }_{-1}^{0}[\beta] \operatorname{correct~(1)~}$	
		Conservation of A and Z (but not for trivial ${ }_{0}^{0} \beta$ ) (1)	2
	(c)	$\lambda=\frac{\ln 2}{T_{1 / 2}} \quad \text { used (1) }$	
		$\frac{\ln 2}{28.8 \times 365 \times 24 \times 3600} \quad\left[=7.63 \times 10^{-10} \mathrm{~s}^{-1}\right](1)$	2
	(d)	Correct equation used i.e. some understanding of $A=A_{0} e^{-\lambda t}$ or $A=\frac{A_{0}}{2^{n}}(1)$	
		Answer correct (110 GBq ecf on $\lambda$ ) (1)	2
	(e)	$A= \pm \lambda N \quad$ used $\quad$ (e.g. $140=7.6 \times 10^{-10} N$ is ok) (1)	
		$N=1.83 \times 10^{20}$ (1)	
		$\begin{aligned} & \text { Mass }=90 \mathrm{ux} 1.83 \times 10^{20}= \\ & 27.4 \times 10^{-6} \mathrm{~kg}(27.4 \mathrm{mg}) \text { ecf on } N(1) \text { UNIT mark } \end{aligned}$	3
		Question 1 total	[11]


Question		Marking details	Marks
2	(a)	LHS - RHS attempted (0.1859u) (1)	
		x 931 or $E=m c^{2}$ used (must have u to kg conversion) (1)	
		$173.1[\mathrm{MeV}] / 2.78 \times 10^{-11}[\mathrm{~J}](1)$	3
	(b)	[more or 3] neutrons are released (1)	
		These can produce fission (or, on average one of these....) (1)	2
	(c)	Control rods stop or absorb neutrons (1)	
		Moderator slows neutrons (1)	
		To increase [probability of] fission (or increase capture X-section) (1)	3
	(d)	[Highly] radioactive for many years / long half life (1)	
		Any sensible A level standard comment relating to - storage, leakage, transportation, cost, dirty bombs etc. (1)	2
		Question 2 Total	[10]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available <br>
\hline \multirow[t]{11}{*}{3} \& \multirow[t]{4}{*}{(a)

(b)} \& \multirow[t]{2}{*}{(i)} \& $$
C=\frac{\varepsilon_{0} A}{d} \text { used }\left(=\frac{8.85 \times 10^{-12} \times 8.2 \times 10^{-4}}{0.77 \times 10^{-3}}\right)(1)
$$ \& <br>

\hline \& \& \& Answer correct ( $9.42 \times 10^{-12} \mathrm{~F}$ ) (1) UNIT mark \& 2 <br>
\hline \& \& (ii) \& Dielectric accept solid insulator \& 1 <br>
\hline \& \& (i) \& $Q=C V$ (used or implied) (1) \& <br>
\hline \& \multirow{7}{*}{(b)} \& \& Answer correct (5.35 x $\left.10^{-8}[\mathrm{C}]\right)$ (1) \& 2 <br>

\hline \& \& (ii) \& $$
Q=Q_{0} \exp \left(\frac{-t}{R C}\right) \text { used e.g. } Q_{0} \exp \left(\frac{-50 \times 10^{-6}}{47 \times 33 \times 10^{-9}}\right)(1)
$$ \& <br>

\hline \& \& \& $=5.3 \times 10^{-22}[\mathrm{C}]$ (1) \& <br>
\hline \& \& \& Comment e.g. v. small or completely discharged etc. (1) ecf \& 3 <br>
\hline \& \& (iii) \& $I=\frac{Q}{t}$ and $T=\frac{1}{f}$ (or implied) or $I=Q \times 20000(1)$ \& <br>
\hline \& \& \& $=20000 \times 5.35 \times 10^{-8}=1.07 \times 10^{-3}[\mathrm{~A}]$ (1) ecf \& 2 <br>
\hline \& \& \& Question 3 Total \& [10] <br>
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& \begin{tabular}{l}
Marks \\
Available
\end{tabular} \\
\hline \multirow[t]{15}{*}{4} \& \multirow[t]{3}{*}{(a)

(b)} \& \& Concentric circle / ellipse with wire @ centre (1) \& <br>
\hline \& \& \& Direction correct and unambiguous (1) \& 2 <br>

\hline \& \& (i) \& $$
B=\frac{\mu_{0} I}{2 \pi a} \quad \text { used (1) }
$$ \& <br>

\hline \& \& \& $B_{l}=2.4 \times 10^{-6}[\mathrm{~T}]$ and $B_{2}=3.6 \times 10^{-6}[\mathrm{~T}](1)$ \& <br>
\hline \& \& \& Answer $B=1.2 \times 10^{-6}[\mathrm{~T}]$ (1) ecf \& <br>
\hline \& \& \& Out of paper (1) \& 4 <br>

\hline \& \& (ii) \& | One wire is in the magnetic field of another (can be implied)(1) |
| :--- |
| Field due to $I_{2}$ out of paper at $I_{l}(1)$ | \& <br>


\hline \& \& \& | Force to left due to LHR (1) |
| :--- |
| Other wire is opposite due to N 3 or opposite field or equivalent (1) | \& <br>

\hline \& \& \& AWARD a maximum of $\mathbf{3}$ marks \& <br>
\hline \& \& \& \& <br>
\hline \& \& \& One wire is in the magnetic field of another (can be implied) (1) \& <br>
\hline \& \& \& Field due to $I_{l}$ out of paper at $I_{2}(1)$ \& <br>

\hline \& \& \& | Force to right due to LHR (1) |
| :--- |
| Other wire is opposite due to N 3 or opposite field or equivalent (1) | \& <br>

\hline \& \& \& AWARD a maximum of $\mathbf{3}$ marks \& 3 <br>
\hline \& \& \& Question 4 Total \& [9] <br>
\hline
\end{tabular}

Question		Marking details	$\begin{gathered} \text { Marks } \\ \text { Available } \end{gathered}$
5	(a)	The right side (independent mark) (1)	
		Force [on electrons (can be implied)] is to the right (1)	
		Due to LHR or current back to front face (1)	3
	(b)	$V=E d \quad($ or $E=V / d)$ (1) Quoted only or implied	
		$=3.2 \times 10^{-6} \times 2.6 \times 10^{-3}($ ecf from a $)=8.32 \times 10^{-9}[\mathrm{~V}]$ (1)	2
	(c)	$e E=$ electrical force and $B e v=$ magnetic force (1)	
		equilibrium is reached or electrons pass through unaffected etc. (1)	2
	(d)	Substituting $v=\frac{1}{n A e}$ in $e E=\operatorname{Bev}$ or calculating $v=3.93 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1}(1)$	
		Rearranging i.e. $B=\frac{E n A e}{I}(1)$	
		Answer $=0.081 \mathrm{~T}(1)$ UNIT mark	3
		Or rearranging $V_{H}=\frac{B I}{n t e}(1)\left\{B=\frac{n t e V}{I}\right\}$	
		Correct substitution (including $t=0.85 \mathrm{~mm}$ and $V=8.32 \mathrm{nV}$ ecf) (1)	
		Answer correct (1)	
		Question 5 Total	[10]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& $$
\begin{gathered}
\text { Marks } \\
\text { Available }
\end{gathered}
$$ <br>
\hline \multirow[t]{15}{*}{6} \& \multirow[t]{6}{*}{(a)

(b)} \& \& Valid complete statement - 2 marks \& 2 <br>
\hline \& \& \& e.g. Induced emf is proportional to (or equal to) the rate of change (or cutting) of flux (linkage) \& <br>
\hline \& \& \& e.g. Accept induced emf = change of flux / time e.g. Accept emf = rate of flux cutting (bod - missing induced) \& <br>
\hline \& \& \& Nearly complete statement - 1 mark \& <br>
\hline \& \& \& e.g. $\mathcal{E}=[-] \frac{[d] \varphi}{[d] t}$ (terms not defined) \& <br>
\hline \& \& \& e.g. Induced emf is proportional to change of flux (missing rate of) \& <br>

\hline \& (b) \& (i) \& $$
\mathcal{E}=-\frac{d \varphi}{d t} \quad \text { or } \frac{\varphi}{t} \text { or } \frac{B A}{t} \text { or } \frac{B A N}{t} \text { (1) }
$$ \& <br>

\hline \& \& \& $A=\pi r^{2} \quad$ used (1) \& <br>

\hline \& \& \& $$
\text { Use of } I=\frac{V}{R}
$$ \& <br>

\hline \& \& \& Correct answer (1) \& 4 <br>
\hline \& \& (ii) \& $\div \sqrt{2}(1)$ \& <br>
\hline \& \& \& $=1410[\mathrm{~A}]$ (1) \& 2 <br>
\hline \& \& (iii) \& $P=I V$ or $I^{2} R$ or $V^{2} / R$ used (1) \& <br>
\hline \& \& \& $=456[\mathrm{~W}]$ (1) \& 2 <br>
\hline \& \& \& Question 6 Total \& [10] <br>
\hline
\end{tabular}





\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Question} \& Marking details \& Marks Available <br>
\hline \multirow[t]{10}{*}{8} \& \multirow[t]{4}{*}{(b)

(c)} \& E- induced emf \& <br>

\hline \& \& $$
\left.\begin{array}{c}
\text { L - (self) inductance } \\
\text { (1) For both }
\end{array}\right\}
$$ \& <br>

\hline \& \& $\frac{\Delta I}{\Delta t}$ - rate of change of current (1) \& 2 <br>

\hline \& \& $$
\begin{equation*}
\mathcal{E}=(-) \frac{d}{d t}(B A N) \quad \text { or } \quad \mathcal{E}=(-) \frac{B A N}{t} \tag{1}
\end{equation*}
$$ \& <br>

\hline \& \multirow[t]{4}{*}{(c)

d} \& $B=\mu_{0} n I$ substituted i.e. $\mathcal{E}=(-) \frac{\mu_{0} n I A N}{t}(1)$ \& <br>
\hline \& \& $N=n l$ substituted i.e. $\mathcal{E}=(-) \frac{d}{d t}\left(\mu_{0} n I A n l\right)(1)$ \& <br>
\hline \& \& Final arrangement and 'comment' e.g. $\varepsilon=(-) \overbrace{\mu_{0} n^{2} A l}^{t} \frac{I}{t}$ (1) \& 4 <br>
\hline \& \& $L=\mu_{0} n^{2} \pi r^{2} l \quad$ i.e. using $\pi r^{2}$ and $\mu_{0} n^{2} A l(1)$ \& <br>
\hline \& \multirow{2}{*}{(d)} \& Answer [=0.25 H] (1) \& 2 <br>
\hline \& \& Question 8 Total \& [20] <br>
\hline
\end{tabular}




Question			Marking details	Marks   Available
10	(a)	(i)	(2x1) from: crystalline- long range, regular (unit cell repeated)	
			Amorphous- short range, irregular	
			Polymeric- long chain molecules (no order between, only within molecules)	
			2 examples given (1)	3
	(b)		Equation applied to both sections correctly i.e. $\frac{F \frac{L_{0}}{2}}{A Y}$ and $\frac{F^{\frac{L_{0}}{2}}}{2 A Y}$ (1)	
			Extensions added i.e. $\frac{F \frac{L_{0}}{2}}{A Y}+\frac{F \frac{L_{0}}{2}}{2 A Y}$	
			Convincing algebra (1)	3
		(ii) I	Line drawn correctly	1
		II	Re-arrange for $\boldsymbol{A}$ bar, 2A bar or combination (1)	
			Correct force-extension combination for each of above (1)	
			Answer $=2 \times 10^{11}\left[\mathrm{~N} \mathrm{~m}^{-2}\right]$	3
		III	Both extensions correct i.e. $2 \mu \mathrm{~m}$ and $4 \mu \mathrm{~m}$ (ecf on line) (1)	
			Correct method of finding energy e.g. $\frac{1}{2} F x$ or $\frac{1}{2} \sigma \varepsilon \times V$ or area (1)	
			Answer correct $\mathrm{E}_{\mathrm{p}}=6 \times 10^{-4}[\mathrm{~J}]\left(\right.$ ecf on line usually $\left.12 \times 10^{-4}[\mathrm{~J}]\right)$ (1)	3
			Alternative: Areas under graph lines - same method applies	

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available <br>
\hline \multirow[t]{8}{*}{10} \& \multirow[t]{8}{*}{(c)} \& \multirow[t]{4}{*}{(i)

(ii)I} \& \multirow[t]{3}{*}{| Hysteresis labelled/described correctly (1) |
| :--- |
| Permanent set labelled/described correctly (1) |
| Correct sketch (1) |} \& <br>

\hline \& \& \& \& <br>
\hline \& \& \& \& 3 <br>
\hline \& \& \& Untangling of molecules (rotation about single bonds) (1) \& <br>
\hline \& \& \& Small force causes large extension (1) \& 2 <br>
\hline \& \& II \& Increasing temperature increases random rotation about single bond (molecules 'ravel' up and become shorter) (1) \& <br>
\hline \& \& \& (Given) force produces smaller extension (1) \& 2 <br>
\hline \& \& \& Question 10 Total \& [20] <br>
\hline
\end{tabular}

Question			Marking details	Marks Available
11	(a)	(i)	A-scan measures distances / depths (1)	
			B-scan provides images (moving) pictures (1)	2
		(ii)	Any valid application	1
			e.g. development of foetus, scanning young (born) babies' skulls imaging liver, kidneys, heart locating arteries/veins/nerves locating fluid (puss, blood etc.) inside body (esp abdomen\&lungs)	
		(iii) I	Time $=7.5 \times 2 \mu \mathrm{~s}(1)$	
			Distance $=$ time $\times 1.45 \times 10^{3}(=21.8 \mathrm{~mm})(1)$	
			Thickness $=0.5 \mathrm{x}$ distance $(=10.9 \mathrm{~mm})(1)$	3
		II	Both pulses at start or only the first pulse (accept second pulse very faint)	1
	(b)	(i)	More electrons emitted or hit target (1)	
			Output higher intensity (1)	2
		(ii)I	$2.8 \times 10^{18}$	1
		II	$80000 \times 1.6 \times 10^{-19}=1.28 \times 10^{-14} \mathrm{~J}$   (accept 80 keV )	1


Question			Marking details	Marks   Available
11	(b)(c)	(iii)	High X-ray dose / high exposure / expensive / CT scanner in high demand	1
			$y$-axis pd or voltage etc. and x -axis time (1)	
			$y$ - axis units - mV (1)	
			$x$-axis unit - $\mathrm{s}(1)$	3
	(d)		Nuclei precess/wobble around field lines (1)	
			Radio waves at resonance frequency change/flip orientation of nuclei (1)	
			Orientation goes back to field direction (while emitting radio waves) (1)	3
	(e)		Lower (1)	
			Alpha are more damaging/ionising (to tissue) (1) Question 11 Total	$\begin{gathered} 2 \\ {[20]} \end{gathered}$


| Question |  | Marking details | Marks <br> Available |
| :--- | :--- | :--- | :--- | :---: |
| 12 |  | 3 valid points for/against coal \& nuclear 3 marks <br> 2 valid points for/against coal \& nuclear 2 marks <br> 1 valid point for/against coal \& nuclear 1 mark <br> Coal <br> Acid rain, global warming/CO emitting, other specified pollution <br> e.g. smog \& carcinogenic particulates, causes asthma, can be very <br> high output power <br> Nuclear <br> Danger of accident/leak in high population area, decommissioning <br> very expensive, waste radioactive for many years and must be <br> contained, expensive in general, no CO2 emission, can be very high <br> output power <br> 2 valid local points 2 marks <br> 1 valid local point 1 mark <br> Local points <br> Large number of local jobs (and plenty of people to fill vacancies), <br> plenty of water available (Thames), less need for long power cables, <br> good rail links, very expensive land prices, causes asthma (but <br> cannot be counted twice), risk of radioactive leak in high population <br> area (but cannot be counted twice), reduces already poor air quality <br> in London etc. | 5 |
| (b) | Substitution of $\frac{Q_{2}}{Q_{1}}=\frac{T_{2}}{T_{1}}(1)$ |  |  |

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& Marking details \& Marks Available <br>
\hline \multirow[t]{14}{*}{12} \& \multirow[t]{6}{*}{(d)

(e)} \& \multirow[t]{3}{*}{(i)} \& $$
\times \frac{100}{25} \quad\left(\text { i.e. } 3.6 \times \frac{100}{25}=10.3 \mathrm{GW}\right)(1)
$$ \& <br>

\hline \& \& \& $\div 25 \quad$ (i.e. $10.3 \div 25)(1)$ \& <br>
\hline \& \& \& Answer $=0.411$ [tonnes s ${ }^{-1}$ ] (1) \& 3 <br>

\hline \& \& \multirow[t]{2}{*}{(ii)} \& | Method correct i.e. (1) |
| :--- |
| $\times 2.1 \times 24 \times 60 \times 60$ (even if $10.3 \mathrm{GW} \times 2.1 \times 24 \times 60 \times 60$ ) | \& <br>

\hline \& \& \& Answer $=653$ tonne ( $\left.653 \times 10^{3} \mathrm{~kg}\right)(1)$ \& 2 <br>
\hline \& \& \multirow[t]{2}{*}{(i)} \& $A=2 \pi r l$ used (allow 1st mark for $\pi d l)(1)$ \& <br>
\hline \& \multirow{8}{*}{(e)} \& \& Correct answer $=90\left[\mathrm{~m}^{2}\right](1)$ \& 2 <br>

\hline \& \& (ii) \& $$
\frac{\Delta Q}{\Delta t}=-A k \frac{\Delta \theta}{\Delta x} \quad \text { used (1) }
$$ \& <br>

\hline \& \& \& Values substituted correctly i.e. $7.24 \times 77 \frac{45}{0.0254}$ (1) \& <br>
\hline \& \& \& Answer correct $=9.87 \times 10^{5}[\mathrm{~W}](1)$ \& 3 <br>
\hline \& \& \multirow[t]{4}{*}{(iii)} \& Lagging (or description of equivalent) (1) \& <br>
\hline \& \& \& With material of high $k$ (or $U$ ) (1) (accept apt material e.g. fibre glass, rockwool etc.) \& 2 <br>
\hline \& \& \& i.e. wrap fibre glass around the pipe - 2 marks \& <br>
\hline \& \& \& Question 12 Total \& [20] <br>
\hline
\end{tabular}

WJEC
$\frac{\text { WJEC }}{\text { CBAC }}$
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

